Adaptive Weighted Multi-Level Fusion of Multi-Scale Features: A New Approach to Pedestrian Detection

نویسندگان

چکیده

Great achievements have been made in pedestrian detection through deep learning. For detectors based on learning, making better use of features has become the key to their effect. While current efforts feature utilization improve performance, is still inadequate. To solve problem inadequate utilization, we proposed Multi-Level Feature Fusion Module (MFFM) and its Multi-Scale Unit (MFFU) sub-module, which connect maps same scale different scales by using horizontal vertical connections shortcut structures. All these are accompanied weights that can be learned; thus, they used as adaptive multi-level multi-scale fusion modules fuse best features. Then, built a complete detector, Adaptive Detector (AFFDet), an anchor-free one-stage detector make full for detection. As result, compared with other methods, our method performance challenging Caltech Pedestrian Detection Benchmark (Caltech) quite competitive speed. It state-of-the-art method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

solution of security constrained unit commitment problem by a new multi-objective optimization method

چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...

Face Verification with Multi-Task and Multi-Scale Features Fusion

Face verification for unrestricted faces in the wild is a challenging task. This paper proposes a method based on two deep convolutional neural networks(CNN) for face verification. In this work, we explore to use identification signal to supervise one CNN and the combination of semi-verification and identification to train the other one. In order to estimate semi-verification loss at a low comp...

متن کامل

Scale-space filtering: A new approach to multi-scale description

The extrema in a signal and its first few derivatives provide a useful general purpose qualitative description for many kinds of signals. A fundamental problem in computing such descriptions is scale: a derivative must be taken over some neighborhood, but there is seldom a principled basis for choosing its size. Scale-space filtering is a method that describes signals qualitatively, managing th...

متن کامل

A weighted metric method to optimize multi-response robust problems

In a robust parameter design (RPD) problem, the experimenter is interested to determine the values of con-trol factors such that responses will be robust or insensitive to variability of the noise factors. Response sur-face methodology (RSM) is one of the effective methods that can be employed for this purpose. Since quality of products or processes is usually evaluated through several quality ...

متن کامل

Vision Based Multi-pedestrian Tracking Using Adaptive Detection and Clustering

This paper proposes a novel vision based multi-pedestrian tracking scheme in crowded scenes, which are very common in real-world applications. The major challenge of the multi-pedestrian tracking problem comes from complicated occlusions, cluttered or even changing background. We address these issues by creatively combining state-of-the-art pedestrian detectors and clustering algorithms. The co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Future Internet

سال: 2021

ISSN: ['1999-5903']

DOI: https://doi.org/10.3390/fi13020038